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Abstract  
 

For short measurement times, the Allan (or two-sample) variance can be determined from 
the phase noise using the mathematical conversion between time and frequency domain.  This 
provides us with a useful tool to obtain the very short-term frequency stability (τ＜0.5 second) 
in the time domain, which is difficult for a time-interval counter to measure because of its 
resolution limitations.  Before carrying out the conversion, bias from the measurement system 
and uncorrelated noises to the DUT (device under test), e.g. ac power noise and environmental 
perturbations are considered and corrected in the raw data.  By doing this, the proper 
characteristic of the DUT seems to be revealed reasonably.  If the above-mentioned bias and 
noises were not corrected, the generated variance would be apart from the corrected one 
irregularly, depending on the sampling time τ.  

In this paper, both the numerical integration and the power-law model are used to practice 
the conversion.  The numerical integration is a straightforward way to use and we can get the 
integral approximation easily.  In addition, a common model for the phase noise is linear 
combinations of power law processes, which are distinguished by the integer powers (α) in their 
functional dependence on Fourier frequency f  with the appropriate coefficients hα.  Fitting 
experimental data with standard regression techniques could have the values of these 
coefficients.  Thereafter, we obtain the variance with Cutler’s equation using these values.  The 
variances from these two ways are compared and inspected.  Finally, because ac power noise is 
always inevitably getting into the measurement system and the DUT, we also make some 
discussions on the role it plays in the calculations of the Allan variance. 

 
 
I.  INTRODUCTION 

 
Spectral densities are measures of frequency stability in what is called the frequency domain, since they 
are functions of Fourier frequency.  The Allan variance, on the other hand, is an example of a time 
domain measure.  In a strict mathematical sense, the Fourier transform relation connects these two 
descriptions as [1-3]: 
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Sy(f) is the spectral density of normalized frequency fluctuations and fh is the high frequency cutoff of a 
low pass filter.  In theory, if we have the information of Sy(f), the Allan variance could be calculated from 
the above relation.  Our lab has a phase noise measurement system including a FSSM100 phase noise 
standard (1, 5, 10, 100 MHz), a FSS1000E noise detector, a FSS1011A delay line unit, and one SRS-760 
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FFT (Fast Fourier Transform) spectrum analyzer.  The signal reference is from a SDI LNFR-400 low- 
noise frequency reference with a noise level of about –173 dBc/Hz (5 MHz PM, at Fourier frequency 100 
KHz).  The system can measure up to –177 dBc/Hz for passive devices [4].  Recently, we improved the 
system using a cross-correlation technique, which enhances the measurement capability to measure the 
noise 15~20 dBc/Hz below the previous one.  With Sy(f) from the phase noise measurement, getting the 
very-short-term frequency stability (τ ＜ 0.5 sec.) in the time domain via time-frequency domain 
conversion is made possible.  Adversely, it is not easy to measure the very-short-term frequency stability 
using a time-interval counter directly due to its resolution limitations.  The traditional time-interval 
counter is applicable only when the sampling time τ is not smaller than 1 second.    
 
As for the mathematical conversion, two methods are adopted for comparison.  The numerical integration, 
or trapezoidal integration to be precise, could calculate the Allan variance easily after the experimental 
data are properly processed.  Besides, the power-law model is frequently used for describing the phase 
noise and it assumes that the spectral density of normalized frequency fluctuations is equal to the sum of 
terms, each of which varies as an integer power of Fourier frequency f.  Thus, there are two quantities that 
completely specify Sy(f) for a particular power-law process: the slope on a log-log plot for a given range 
of f and the amplitude.  The slope is denoted by α and, therefore, fα is the straight line on a log-log plot 
that relates Sy(f) to f.  The amplitude is denoted by hα.  Therefore, Sy(f) can be represented by the addition 
of all the power-law processes with the appropriate coefficients:  
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While 2πfhτ >> 1, Cutler derived equation (3) from equation (1) and (2): 
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By properly determining the coefficients, the Allan variance with different τ could be obtained using 
Cutler’s equation.  This could be achieved by locating each particular noise process in its dominant range 
of f with standard regression techniques.   
 
 
II.  TESTS  OF  FIVE  NOISE  TYPES 

 
Before carrying out the mathematical conversion using the experimental results, we would like to know 
how each noise process behaves in this conversion.  According to the power-law model, there are five 
types of noise processes, including Random Walk FM, Flicker FM, White FM, Flicker PM and White PM, 
with α equal to -2, -1, 0, +1, and +2 respectively.  That means we need to generate five different Sy(f) for 
tests.  For example, Sy(f) of the Random Walk FM noise process could be obtained by assuming the 
amplitude coefficient h-2 equal to 1×10-26 with the rest equal to zero.  The numerical integration and the 
power-law model are then used to calculate the Allan deviation (ADEV), that is, the square root of the 
Allan variance.  With τ ranging from 1 millisecond to 10 seconds, the calculated ADEVs from both 
methods are shown in Figure 1 (a).  It is obvious that while τ is smaller than 1 second, their ADEVs are in 
good agreement with each other.  In this manner, Sy(f) of the other noise processes can be generated by 
separately assuming h-1 = 1×10-26, h0 = 1×10-26, h+1 = 4×10-28, and h+2 = 3×10-31 for the corresponding noise 
processes and their ADEVs are shown in Figure 1 (b), (c), (d), and (e). 
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(b)

(d)(c) 

(e) 

(a) 

 
It can be seen that for the noise processes of Flicker FM and White FM, the ADEV from both methods 
are in good agreement with each other while τ is smaller than 1 second; for Flicker PM, the ADEV from 
both methods match each other well in the whole range of τ, but for white PM, the results using the 
numerical integration vary up and down depending on τ, while the ones using the power-law model do 
not.  Furthermore, only for some certain values of τ would the ADEV from both methods match each 
other well as to the last noise process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The ADEV of five types of noise processes using the numerical 
integration and the power-law model.  The sampling time τ is from 1 
millisecond to 10 seconds. 
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III.  RESULTS  AND  CALCULATIONS 
 
Realizing how each individual noise process behaves in the conversion using these two methods, we try 
to convert the real phase noise measurement data into ADEV.  Here we take the noise floor of our 
measurement system to be an example.  A 5 MHz reference signal is split with a reactive splitter to 
provide a pair of input signals.  These signals are connected to the LO and RF ports of a double-balanced 
mixer.  A delay line unit is required here to put the two signals into quadrature (90° out of phase) before 
entering the mixer.  The output of the mixer is low pass filtered, amplified, and then fed into a FFT 
spectrum analyzer.  
 
The spectral density of the system noise floor is shown in the upper graph of Figure 2.  The Fourier 
frequency range is from 0.12 Hz to 99.75 kHz.  There are some spur-like components appearing 
obviously in the graph, like noises of 60 Hz, 120 Hz, 180 Hz, etc.  It is clear that most of the outliers 
should arise from the ac power noise, which is always inevitably getting into the measurement system or 
the DUT.  In order to check how much these spur-like components influence the calculation of the ADEV, 
we use the raw data and the outliers-removed data to calculate the ADEV and then compare them.  The 
corrected spectral density of the system noise floor is shown in the lower graph of Figure 2. 
  
 

 
Figure 2.  Spectral density of the system noise floor in Fourier frequency 
ranging from 0.12 Hz to 99.75 kHz.  Upper graph: Spectral density consisting 
of spur-like periodic noises, e.g. ac power noise.  Lower graph: Outliers are 
removed from the spectral density.   

 
 
The measure L (f) on the y-axis is the prevailing expression of the phase noise among manufacturers and 
users of frequency standards.  Its relation to Sy(f) can be expressed as: 
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Sφ(f) is the spectral density of phase fluctuations and v0 is the carrier frequency.  L (f) is usually reported 
in a dB format.   
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After some calculations, the results from above-mentioned data using the numerical integration are shown 
in Figure 3.  Roughly speaking, the spur-like components make the generated ADEV bigger than the 
other one, but because both of them vary up and down inconsistently, depending on τ, it is hard to 
precisely identify how much these spur-like components contribute to the ADEV.  
 

 
Figure 3.  The ADEV calculated from the raw data with spur-like components and the 
outliers-removed data using the numerical integration.  Both of them vary up and 
down inconsistently, depending on τ. 

 
 
The power-law model is not applicable here because the existence of spur-like components is not in its 
basic assumption.  It is meaningless to fit the experimental data with the model.  Nevertheless, we can 
still make the ADEV comparison with the outliers-removed data using the numerical integration and 
power-law model.  In the lower graph of Figure 2, we see that when f increases by one decade, L (f) also 
goes down by one decade for f = 0.12 ~ 1000 Hz.  The dominant noise process in this range can be 
regarded as Flicker PM.  For f = 10 ~ 99.75 kHz, L (f) is almost the same, and the dominant noise process 
should be White PM.  We use the functions h+1f and h+2f2 to fit the data in the corresponding range and 
get h+1 = 4.68× 10-28 and h+2 = 2.61× 10-31.  With the help of Cutler’s equation, we can compare the 
generated ADEV with the one using the numerical integration, as shown in Figure 4.   
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We observe that the results using the numerical integration vary up and down, depending on τ, while the 
ones using the power-law model do not.  Furthermore, only for some certain values of τ would the ADEV 
from both methods match each other well.  Since there are only two noise processes existent in the data, it 
seems to be a reasonable conclusion that the noise process of White PM in the data should be responsible 
for this observation, as shown in the previous tests of five noise types.   
 

 

 
Figure 4. The ADEV calculated from the outliers-removed data using the numerical 
integration and the power-law model.  The former varies up and down, depending on 
τ, while the latter does not. 

 
 
IV.  CONCLUSIONS 
 
In this paper, we use the phase noise data in our lab to calculate the ADEV via the time-frequency domain 
conversion.  The numerical integration and Cutler’s equation derived from the power-law model are two 
methods adopted for comparison.  We observe that for the noise processes of Random Walk FM, Flicker 
FM, White FM, and Flicker PM, the ADEV from both methods match each other well while τ is smaller 
than 1 second, but for White PM, the ADEV using the numerical integration varies up and down, 
depending on τ, while the one using the power-law model does not.  This observation is shown both in the 
individual noise tests and the result from a real phase noise measurement.  That means obtaining the very- 
short-term frequency stability (τ ＜ 0.5 second) in the time domain is possible if the discrepancy of the 
White PM calculation from the two methods can be resolved.  Besides, as for the influence of ac power 
noise, it is hard to precisely identify how much these spur-like components contribute to the ADEV, also 
due to the influence of White PM using the numerical integration.  In order to solve this problem, we will 
do more research in the near future. 
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QUESTIONS  AND  ANSWERS 
 
 
SAM STEIN (Timing Solutions Corporation):  I am confused about the outliers.  What is the nature of 
the outliers? 
 
PO-CHENG CHANG:  They are the AC power influence.   
 
STEIN:  They are dispersed? 
 
CHANG:  Yes. 


